GROUPING OF SEWING TOOL ASSISTANCE RECIPIENTS USING K-MEANS CLUSTERING ANALYSIS
DOI:
https://doi.org/10.53625/ijss.v2i2.3085Keywords:
sewing equipment assistance classification distribution k-means methodAbstract
Aid programs for underprivileged communities need continuous data collection in overcoming welfare problems, what has happened so far is by providing direct assistance to very poor families in every village in Indonesia. Related to this, the problem that has occurred so far is that the direct assistance program is not right on target, because many deserving families should not receive the assistance. The data obtained from the village government is not accurate, it is found that data is considered invalid. This study aimed to determine the distribution of sewing equipment recipients in the best cluster, for sewing equipment recipients in Greged Village, Cirebon Regency. As one way to improve data accuracy, a computational method or model is needed in the form of a data mining algorithm using the k-means clustering method to generate priority groups among hundreds of citizens or the poor. The stages start from data collection, training data, and testing data that consider several criteria from household information, economic conditions, housing conditions, and the number of household members in Greged Village, Cirebon Regency. The results of the tests carried out using 155 data with the best level of accuracy were in the K3 cluster with the Davies Bouldin Index’s value o: - 0.584. With the K-Means method, it is very appropriate to determine the recipient of the sewing equipment program in Greged Village.
References
1M. Nanda Variestha Waworuntu, 2Muhammad Faisal Amin. (2018). Penerapan Metode K-Means Untuk Pemetaan Calon Penerima Jamkesda. Klik - Kumpulan Jurnal Ilmu Komputer, 190.
Apolinaria Ifon Purnama1), Abdul Aziz2), Anggri Sartika Wiguna3). (2019). Penerapan Data Mining Untuk Mengklasifikasi Penerima Bantuan Pkh Desa Wae Jare Menggunakan Metode Naïve Bayes. Router Research, 22-28.
Hendarman Lubisa, Ratna Salkiawatib, Sudirman Hala. (2022). Penerapan Metode Simple Additive Weighting Untuk Penerimaan Bantuan Langsung Tunai Dana Desa. Fakultas Ilmu Komputer.
Moh. Fadel Asikin1, Dian Eka Ratnawati2, Mochammad Ali Fauzi3. (2018). Penentuan Penerima Bantuan Ternak Menggunakan Algoritma K-Means & Penentuan Penerima Bantuan Ternak Menggunakan Algoritma K-Means & Naïve Bayes. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 641-649.
Windha Mega Pradnya Dhuhita. (2015). Clustering Menggunakan Metode K-Mean Untuk Menentukan Status Gizi Balita. Jurnal Informatika Darmajaya, 160-174.
[I., & Firdaus, A. A. (2019). Penerapan Algoritma C4.5 Untuk Klasifikasi Penentuan Penerimaan Bantuan Langsung Di Desa Ciomas. Teknois : Jurnal Ilmiah Teknologi Informasi Dan Sains, 8(1), 17–28. https://doi.org/10.36350/jbs.v8i1.18
Aprilawati, R., & Tarigan, P. (2019). Implementasi Data Mining Untuk Menentukan Keluarga Yang Layak Mendapat Kartu Pkh ( Program Keluarga Harapan ) Dengan Metode K-Means Clustering. Jurnal Pelita Informatika, 18(1), 69–73.
Hofmann, M., & Klinkenberg, R. (2014). Data Mining and Knowledge Discovery Series : RAPID MINER Data Mining Use Cases and Business Analytics Applications. https://doi.org/78-1-4822-0550-3
Rahayu, S., & RMS, A. S. (2018). Penerapan Metode Naive Bayes Dalam Pemilihan Kualitas Jenis Rumput Taman CV. Rumput Kita Landscape. Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 9(2), 162–171. https://doi.org/10.31849/digitalzone.v9i2.1942
J. Nasional, S. Informasi, and A. Wanto, “Optimasi Prediksi Dengan Algoritma Backpropagation Dan Conjugate Gradient Beale-Powell Restarts,” vol. 03, no. 2017, pp. 370–380, 2018.
https://www.cirebonkab.go.id/daftar-penerima-bansos-kab-cirebon.