MANFAAT PERANGKAT ELEKTRONIK PADA GAYA BERJALAN DAN PENGKAJIAN RISIKO JATUH

Authors

  • Rusjini Fakultas Ilmu Keperawatan Universitas Indonesia, Depok
  • Sigit Mulyono Fakultas Ilmu Keperawatan Universitas Indonesia, Depok

DOI:

https://doi.org/10.53625/jirk.v1i8.1054

Keywords:

perangkat elektronik, gaya berjalan, dan jatuh

Abstract

Risiko tinggi cidera pada dewasa tua terjadi saat jatuh, dan merupakan salah satu penyebab utama kematian dan cedera tidak fatal. Kemajuan teknologi telah memungkinkan pemantauan aktivitas kehidupan sehari-hari menggunakan perangkat yang dapat dipasang di dada, pinggang, betis, dan pergelangan kaki atau ponsel. Tinjauan pustaka ini bertujuan untuk mendeskripsikan manfaat perangkat elektronik pada gaya berjalan dan pengkajian risiko jatuh. Penelitian ini menggunakan metode literature review. Basis data yang digunakan adalah Scopus, PROQUEST, PubMed, ScienceDirect, SpringerLink, dan Artikel Cendekia dengan beberapa kata kunci, seperti perangkat elektronik, gaya berjalan, dan pengkajian risiko jatuh dan tidak membatasi metode penelitian yang digunakan. Hasil studi ini menunjukkan penggunaan sensor atau perangkat elektronik yang dipakai oleh pengguna, dapat digunakan untuk mendeteksi gaya berjalan dan memprediksi risiko jatuh. Perlu adanya studi lebih lanjut terkait sensor atau perangkat yang murah dan mudah digunakan sehingga kejadian jatuh, baik di pelayanan kesehatan maupun dirumah dapat diminimalisir.

References

Bernhard, F. P., Sartor, J., Bettecken, K., Hobert, M. A., Arnold, C., Weber, Y. G., Poli, S., Margraf, N. G., Schlenstedt, C., Hansen, C., Hansen, C., & Maetzler, W. (2018). Wearables for gait and balance assessment in the neurological ward - study design and first results of a prospective cross-sectional feasibility study with 384 inpatients. BMC Neurology, 18(1). https://doi.org/10.1186/s12883-018-1111-7

Brodie, M. A., Okubo, Y., Annegarn, J., Wieching, R., Lord, S. R., & Delbaere, K. (2017). Disentangling the health benefits of walking from increased exposure to falls in older people using remote gait monitoring and multi-dimensional analysis. Physiological Measurement, 38(1), 45–62. https://doi.org/10.1088/1361-6579/38/1/45

Ganz, N., Gazit, E., Giladi, N., Dawe, R. J., Mirelman, A., Buchman, A. S., & Hausdorff, J. M. (2021). Automatic quantification of tandem walking using a wearable device: New insights into dynamic balance and mobility in older adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 76(1), 101–107. https://doi.org/10.1093/GERONA/GLAA235

Hauth, J., Jabri, S., Kamran, F., Feleke, E. W., Nigusie, K., Ojeda, L. V., … Sienko, K. H. (2021). Automated loss-of-balance event identification in older adults at risk of falls during real-world walking using wearable inertial measurement units. Sensors, 21(14). https://doi.org/10.3390/s21144661

Howcroft, Jennifer, Kofman, J., & Lemaire, E. D. (2017). Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(10), 1812–1820. https://doi.org/10.1109/TNSRE.2017.2687100

Huizenga, D., Rashford, L., Darcy, B., Lundin, E., Medas, R., Shultz, S. T., DuBose, E., & Reed, K. B. (2021). Wearable gait device for stroke gait rehabilitation at home. Topics in Stroke Rehabilitation, 28(6), 443–455. https://doi.org/10.1080/10749357.2020.1834272

Mertens, M., Raepsaet, J., Debard, G., Mondelaers, M., Vanrumste, B., & Davis, J. (2019). Use of wearable technology to quantify fall risk in psychogeriatric environments: A feasability study. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 3187–3190. https://doi.org/10.1109/EMBC.2019.8856337

Meyer, B. M., Tulipani, L. J., Gurchiek, R. D., Allen, D. A., Adamowicz, L., Larie, D., Solomon, A. J., Cheney, N., & McGinnis, R. S. (2021). Wearables and Deep Learning Classify Fall Risk from Gait in Multiple Sclerosis. IEEE Journal of Biomedical and Health Informatics, 25(5), 1824–1831. https://doi.org/10.1109/JBHI.2020.3025049

Muchna, A., Najafi, B., Wendel, C. S., Schwenk, M., Armstrong, D. G., & Mohler, J. (2018). Foot problems in older adults associations with incident falls, frailty syndrome, and sensor-derived gait, balance, and physical activity measures. Journal of the American Podiatric Medical Association, 108(2), 126–139. https://doi.org/10.7547/15-186

Nguyen, T. Q., Young, J. H., Rodriguez, A., Zupancic, S., & Lie, D. Y. C. (2019). Differentiation of patients with balance insufficiency (Vestibular hypofunction) versus normal subjects using a low-cost small wireless wearable gait sensor. Biosensors, 9(1). https://doi.org/10.3390/bios9010029

Nouredanesh, M., & Tung, J. (2019). IMU, sEMG, or their cross-correlation and temporal similarities: Which signal features detect lateral compensatory balance reactions more accurately? Computer Methods and Programs in Biomedicine, 182. https://doi.org/10.1016/j.cmpb.2019.105003

Psarakis, M., Greene, D. A., Cole, M. H., Lord, S. R., Hoang, P., & Brodie, M. (2018). Wearable technology reveals gait compensations, unstable walking patterns and fatigue in people with multiple sclerosis. Physiological Measurement, 39(7). https://doi.org/10.1088/1361-6579/aac0a3

Rivolta, M. W., Aktaruzzaman, M., Rizzo, G., Lafortuna, C. L., Ferrarin, M., Bovi, G., Bonardi, D. R., Caspani, A., & Sassi, R. (2019). Evaluation of the Tinetti score and fall risk assessment via accelerometry-based movement analysis. Artificial Intelligence in Medicine, 95, 38–47. https://doi.org/10.1016/j.artmed.2018.08.005

Wang, J., Gong, D., Luo, H., Zhang, W., Zhang, L., Zhang, H., … Wang, S. (2020). Measurement of step angle for quantifying the gait impairment of Parkinson’s disease by wearable sensors: Controlled study. JMIR MHealth and UHealth, 8(3). https://doi.org/10.2196/16650

Yu, L., Zhao, Y., Wang, H., Sun, T.-L., Murphy, T. E., & Tsui, K.-L. (2021). Assessing elderly’s functional balance and mobility via analyzing data from waist-mounted tri-axial wearable accelerometers in timed up and go tests. BMC Medical Informatics and Decision Making, 21(1). https://doi.org/10.1186/s12911-021-01463-4

Zahiri, M., Chen, K. M., Zhou, H., Nguyen, H., Workeneh, B. T., Yellapragada, S. V., Sada, Y. H., Schwenk, M., & Najafi, B. (2019). Using wearables to screen motor performance deterioration because of cancer and chemotherapy-induced peripheral neuropathy (CIPN) in adults - Toward an early diagnosis of CIPN. Journal of Geriatric Oncology, 10(6), 960–967. https://doi.org/10.1016/j.jgo.2019.01.010

Zhang, Y., Wang, H., Yao, Y., Liu, J., Sun, X., & Gu, D. (2021). Walking stability in patients with benign paroxysmal positional vertigo: an objective assessment using wearable accelerometers and machine learning. Journal of NeuroEngineering and Rehabilitation, 18(1). https://doi.org/10.1186/s12984-021-00854-y

Zhou, H., Al-Ali, F., Rahemi, H., Kulkarni, N., Hamad, A., Ibrahim, R., Talal, T. K., & Najafi, B. (2018). Hemodialysis impact on motor function beyond aging and diabetes—objectively assessing gait and balance by wearable technology. Sensors (Switzerland), 18(11). https://doi.org/10.3390/s18113939

Downloads

Published

2022-01-21

Issue

Section

Articles