PENERAPAN MULTILAYER PERCEPTRON UNTUK IDENTIFIKASI KANKER PAYUDARA

Authors

  • Nimas Ratna Sari Institut Teknologi Sains dan Kesehatan Sugeng Hartono Perairan/Universitas Satya Wiyata Mandala
  • Yulaikha Mar’atullatifah Institut Teknologi Sains dan Kesehatan Sugeng Hartono Perairan/Universitas Satya Wiyata Mandala

DOI:

https://doi.org/10.53625/jcijurnalcakrawalailmiah.v2i8.5519

Keywords:

Artificial Intelligence, Multilayer Perceptron, kanker payudara, klasifikasi

Abstract

Artificial Intelligence telah banyak diimplementasikan diberbagai bidang. Pada bidang Kesehatan, AI dapat digunakan untuk membantu tenaga Kesehatan dalam melakukan analisis dan memberikan support system. Pada permasalahan kanker payudara merupakan salah satu masalah kesehatan yang terus meningkat setiap tahunnya. Proses identifikasi yang merupakan langkah awal penanganan dapat memakan waktu dan biaya yang cukup terutama untuk daerah yang belum mempunyai fasilitas dan sumber daya yang cukup. Oleh karena itu, penelitian ini bertujuan untuk mendapatkan model multilayer perceptron untuk proses klasifikasi kanker payudara. 

References

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: A Cancer Journal for Clinicians, vol. 68, no. 6, pp. 394–424, 2018, doi: 10.3322/caac.21492.

R. A. da Costa Vieira, G. Biller, G. Uemura, C. A. Ruiz, and M. P. Curado, “Breast cancer screening in developing countries,” Clinics (Sao Paulo), vol. 72, no. 4, pp. 244–253, Apr. 2017, doi: 10.6061/clinics/2017(04)09.

C. Hu et al., “A Population-Based Study of Genes Previously Implicated in Breast Cancer,” New England Journal of Medicine, vol. 384, no. 5, pp. 440–451, Feb. 2021, doi: 10.1056/NEJMoa2005936.

Z. Momenimovahed and H. Salehiniya, “Epidemiological characteristics of and risk factors for breast cancer in the world,” Breast Cancer (Dove Med Press), vol. 11, pp. 151–164, Apr. 2019, doi: 10.2147/BCTT.S176070.

R. Dastres and M. Soori, “Artificial Neural Network Systems”.

S. Nardin et al., “Breast Cancer Survivorship, Quality of Life, and Late Toxicities,” Frontiers in Oncology, vol. 10, 2020, Accessed: Jan. 29, 2023. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fonc.2020.00864

C. Zhang and Y. Lu, “Study on artificial intelligence: The state of the art and future prospects,” Journal of Industrial Information Integration, vol. 23, p. 100224, Sep. 2021, doi: 10.1016/j.jii.2021.100224.

“History of artificial intelligence in medicine | Elsevier Enhanced Reader.” https://reader.elsevier.com/reader/sd/pii/S0016510720344667?token=ED3FBB7A7905683269BACF07AB9784409640781E83F1EEA383B0EFF8B9A945FC81C1A8073A412BC88CE01677B89CC360&originRegion=eu-west-1&originCreation=20230414071938 (accessed Apr. 14, 2023).

A. Haleem, M. Javaid, and I. H. Khan, “Current status and applications of Artificial Intelligence (AI) in medical field: An overview,” Current Medicine Research and Practice, vol. 9, no. 6, pp. 231–237, Nov. 2019, doi: 10.1016/j.cmrp.2019.11.005.

S. Teixeira Zavadzki de Pauli, M. Kleina, and W. H. Bonat, “Comparing Artificial Neural Network Architectures for Brazilian Stock Market Prediction,” Ann. Data. Sci., vol. 7, no. 4, pp. 613–628, Dec. 2020, doi: 10.1007/s40745-020-00305-w.

K.-C. Ke and M.-S. Huang, “Quality Prediction for Injection Molding by Using a Multilayer Perceptron Neural Network,” Polymers, vol. 12, no. 8, Art. no. 8, Aug. 2020, doi: 10.3390/polym12081812.

“UCI Machine Learning Repository: Breast Cancer Wisconsin (Diagnostic) Data Set.” https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29 (accessed Feb. 21, 2023).

Breast Cancer Wisconsin (Diagnostic) Data Set.” https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data (accessed Feb. 21, 2023).

Downloads

Published

25-04-2023

How to Cite

Nimas Ratna Sari, & Yulaikha Mar’atullatifah. (2023). PENERAPAN MULTILAYER PERCEPTRON UNTUK IDENTIFIKASI KANKER PAYUDARA. Jurnal Cakrawala Ilmiah, 2(8), 3261–3268. https://doi.org/10.53625/jcijurnalcakrawalailmiah.v2i8.5519

Issue

Section

Articles